

DKMS Brief No. Three: Software Agents in Distributed Knowledge Management
Systems

Agents and DKM Architecture

In recent White Papers [1] and in DKMS Brief No. One [2], I presented Distributed Knowledge Management
(DKM) architecture as the appropriate architecture for Distributed Knowledge Management Systems (DKMS),
and DKMS as the IT application whose purpose is to support the Knowledge Management Process. An
important aspect of DKM architecture is its Active Knowledge Manager (AKM) component.

The AKM provides process control/distribution services, an in-memory active object model accompanied by a
persistent object store, and connectivity to a variety of data stores and application types. One way the AKM
can perform some of its process control services is through software agents. Let's first briefly review some
fundamentals on software agents, and then see how agents can contribute to process control services.

An Overview of Software Agents

A Software Agent (SA) is a software object that acts on behalf of another software object (its client) and
behaves to at least some degree: autonomously (without continuous direction), socially (interacts with other
agents), proactively (influences its environment), and reactively (is influenced by its environment). [3] An
intelligent software agent is an SA that: has an in-memory knowledge base including cognitions, evaluations,
goals, and perhaps even affects; is rational in the sense that it makes decisions, acts to attain its goals; and
learns.

A static SA is one that does not move from the platform that creates it. A Mobile SA [4] can move across a
network from one physical computer to another. It can do this autonomously, as it perceives the need for such
movement. It takes its run-time environment with it wherever it goes. It can stop program execution on one
computer, move to another computer and then begin again at the second computer, interacting with that
computer to communicate and/or gather data, information, or knowledge.

Contrast the mobile SA concept with the original client/server model. In the client/server model, a single
request is sent over a network and activates a computing procedure at the destination computer. A result is
then sent across the network to the client. In contrast, a mobile SA travels to a server and then may perform a
variety of transactions with it. Eventually, when its business with the destination computer is done, it either
returns to the source computer with the results of its transactions, or moves to another destination computer to
transact still more business.

The "source computer" of a mobile SA is its home agency. [5] The agency consists of a computing

1 of 6 5/24/02 3:27 PM

Software Agents in Distributed Knowledge Management Systems file:///E|/FrontPage Webs/Content/EISWEB/DKMSAgentsbak.html

environment, an agent scripting capability, and a database. Mobile SAs register with home agencies. They also
register as visitors with other agencies. Some Mobile SAs are Broker Agents. They recruit other agents to
create task forces and delegate work to the agents they recruit. They can also contract with other agents as
part of the recruitment process.

Mobile SAs and their agencies require a host environment in order to execute. This is a distributed computing
environment overlaying a host distributed computing environment. It provides various essential services to
mobile SAs, including the ability to create them, and the ability to execute. [6]

Software Agents and Process Control Services

The DKMS is a system providing support for business processes composed of Planning, Acting, Monitoring,
and Evaluating sub-processes [7]. In turn, these sub-processes are composed of more specific sub-processes or
use cases, and these, in turn, are composed of tasks. A comprehensive analysis of how agents can participate in
process control services, would need to go through the details of how each use case and task sub-process
might be performed by agents and the DKMS's agent-based infrastructure. That's way beyond the scope of this
column. What I will do though, is to provide a general characterization of how SAs fit into process control
services, and leave detailed analyses of how they contribute to individual use cases for future Briefs and White
Papers.

Process Control Services in the DKM include:
in - memory proactive object state management and synchronization across distributed objects;
component management;
use case and workflow management; and
transactional multithreading.

Agents have no role in transactional multithreading, which is a fundamental aspect of the AKM. But they may
contribute, as DKM architecture evolves, to the other three areas.

Object/Component Management and Agents

In the DKMS, business objects will be shared across data warehouse and data mart applications, and will be
stored in an in-memory object model. The DKMS through the AKM must have the ability to monitor and
coordinate changes in the shared classes and objects across these applications and across their different physical
platforms. This means the ability to monitor and coordinate changes in attributes and methods of the shared
objects automatically. Let's call this ability Dynamic Integration [8]. To perform dynamic integration, the
system must:

look for changes in shared objects and additions to the total pool of objects and
relationships,
alert all system components sharing the objects of such changes, and also
make decisions about which changes should be implemented in each affected component
throughout the system.

It is important that changes in shared objects are propagated and new objects are created in real-time, so that a
single view of the DKMS object model is maintained. This is why in-memory, proactive operation is so
important.

Like objects, components can also be shared across applications and physical platforms. Component
management is the ability to monitor, coordinate, and synchronize changes in components, and is analogous to
object state management at the component level. It too, needs to be performed in real-time, and it too requires

2 of 6 5/24/02 3:27 PM

Software Agents in Distributed Knowledge Management Systems file:///E|/FrontPage Webs/Content/EISWEB/DKMSAgentsbak.html

proactive, in-memory operation to be most effective.

Agents can play a major role in performing dynamic integration as part of the AKM. The AKM is itself
composed of distributed object models, made up of reflexive objects [9]. A reflexive object is one that is aware
of changes in its state. When a change is introduced in one of these objects it communicates the change
(through an alert) to a central object model within the AKM. The central object model contains a view of all
objects and relationships in the DKMS. The central object model will respond to this alert by incorporating the
changes into the central object model and deleting the old versions of the objects, as long as no other object
models share the old object versions. If they do, the central object model will dispatch Negotiator mobile
agents to the various distributed object models incorporating old object versions.

The task of these Negotiator mobile agents is to negotiate with the effected distributed object models about
whether the changed objects are acceptable to them. The distributed object models can employ static agents to
negotiate for them. If the changed objects are acceptable, the old versions of the objects can be deleted from all
object models, and the new objects can be incorporated into all distributed object models. If not, the central
object model will maintain both the old and the changed objects to accommodate disagreements among the
distributed applications.

Both the mobile and the static agents involved in the mutual coordination process will need some intelligence.
That is, they will exhibit cognitions, evaluations, and goals, will make decisions, and perhaps should have the
capacity to learn from previous negotiations with other agents.

Why are negotiator agents desirable in performing dynamic integration? While dynamic integration can be
performed without negotiator agents, the advantage in using them comes from better performance. Without
negotiator agents all of the transactions in negotiations between central and local components of the AKM
would flow over the enterprise network. With them, only the agents are sent from the central AKM component
to other components. Negotiations actually occur on the target rather than the source platform. When the
agent returns to the central AKM component, it brings back only the result of the negotiation.

Use Case/Workflow Management and Agents

DKMSs support business processes by assisting efforts to gather, organize, create, maintain, and enhance
knowledge about them, and also by providing support for planning, implementing, monitoring, and evaluating
the course of the business process. Both use cases and work flows are task sequences within these activities
that process, route, and distribute information products, but the connotations of the two terms are somewhat
different. The use case concept looks at a task sequence from the point of view of the valued outcome the user
will get from a task sequence. Work flow, on the other hand, refers to the automated system constructed to
implement a use case, a part of a use case, or a set of related use cases. Process control services must provide
the means to manage such work flows by:

1. facilitating specification of routing and distribution;
2. supporting rapid and easy change in the routing structure, the distribution process, and the

business rules governing the work flow;
3. providing the capability to either store the product of a work flow task or "push" it to the next

step in the work flow;
4. providing the capability to distribute the work flow process across multiple computers;
5. providing the capability to gather knowledge resources to support the work flow;
6. supporting collaborative transactions among work flow participants;
7. providing the capability to simulate the work flow; and
8. providing the capability to customize work flows by integrating custom, legacy, or external data

and/or applications.

3 of 6 5/24/02 3:27 PM

Software Agents in Distributed Knowledge Management Systems file:///E|/FrontPage Webs/Content/EISWEB/DKMSAgentsbak.html

Agents may be applied in work flow process control areas 3-8.

Area 3: In deciding whether to store the product of a work flow task or push it to the next step, negotiator
agents of the components performing the steps can exchange information on the depth of their work queues;
and on their relative abilities to store and process the next step in the work flow. Together they can decide on
whether the work flow item in question will be stored or "pushed." In case of disagreement the central AKM
component can arbitrate.

Area 4: Agents based at each component, can also increase the capability to distribute the work flow process
by continuously monitoring their components and alerting the central AKM component if processing capability
is stressed [10]. The central AKM agent can then assist the "local" agents in negotiations to distribute the work
load.

Area 5: Knowledge Retrieval agents, next, can help in providing the capability to gather knowledge resources
to support a work flow. Such agents can model [11] each individual information or knowledge resource within
the DKMS. They can then collaborate with Interface agents, receiving queries from them and transmitting only
the results to the interface agents. Various types of knowledge may be retrieved by such agents including
descriptive, impact-related, predictive, outcome assessment, and benefit/cost assessment knowledge.

Area 6: Intelligent Interface agents can support collaborative work flow activity in useful ways. For example,
in planning, a number of decision makers may have to agree on a hierarchy of goals and objectives, and
ultimately on a planning option. Interface agents can help planners to be explicit about the goals, objectives and
priorities that comprise their planning hierarchies. Then negotiating agents for different planners can work
together to analyze the similarities and differences in planning hierarchies and to negotiate a common planning
hierarchy.

Interface agents and negotiating agents can also be important in developing concrete planning options
incorporating planning hierarchies and action effect scenarios into plans. Planners will differ not only in their
planning hierarchies, but also in their cognitive maps relating actions and effects. Again, interface agents can
help planners be explicit about their cognitive maps, and negotiating agents can work together to arrive at a
common cognitive map underlying a preferred planning option.

In addition to supporting planning, interface and negotiating agents can support collaborative work in
Knowledge Discovery in Databases (KDD) activity [12]. Here analysts will disagree on both cognitive maps
expressed in formal models, and on validation criteria used to select among models. Interface agents can help
analysts to perform formal modeling, they can also help them in formulating their validation schema supporting
model choice. Negotiating agents can then assist analysts in arriving at common validation schema.

Area 7: Agents can also assist in simulating work flow systems. Systems can be represented by agents
functioning as the nodes of a work flow. Agents can be assigned tasks they perform according to rules
programmed in the agents and triggered by events and their parameters. Work flow items can be defined to
provide agents something to process. When the simulation is run various characteristics of the work flow
design can be evaluated.

Area 8: Agents provide only one way to integrate custom, legacy, or external data and applications into a
work flow system. But agent technology can be used to produce a simple information agent by "wrapping" any
information source to allow it to conform to the communication conventions of an agent infrastructure [13].
While this is not so much a contribution to process control in itself, it does support other agents in the DKMS
infrastructure by facilitating communications between such simple information agents and other more proactive
agents, and by providing a capability to script the onformation agents to perform simple functions such as
scheduled reporting and alerting of other agents to important events reflected in the information source.

4 of 6 5/24/02 3:27 PM

Software Agents in Distributed Knowledge Management Systems file:///E|/FrontPage Webs/Content/EISWEB/DKMSAgentsbak.html

Conclusion

Software agents are among the most significant technical developments in IT today. In previous columns and
White Papers on the DKMS and on DKM architecture I have not been explicit about the role of agents in the
DKMS, but instead have concentrated more generally on distributed objects and components. In this column
I've provided a general viewpoint on how agents fit into the DKMS picture. Most generally, I've claimed that
they can be vital in solving object and component state and change management, and in solving the Dynamic
Integration Problem. In addition, I've pointed to a wide range of contributions agents can make in supporting
various aspects of the use cases and associated work flows comprising the DKMS.

In future columns I'll take up agents again. But this time the focus will be on specific use cases in the DKMS
and on associated work flows. By exploring the role of agents in this concrete way I will begin to fill in some of
the details of DKM architecture.

References

[1] I introduced the DKMS concept in two previous White Papers "Object-Oriented Data Warehouse," and
"Distributed Knowledge Management Systems: The Next Wave in DSS." DKM architecture was introduced in
a third White Paper "Architectural Evolution in Data Warehousing." All three are available at
http://www.dkms.com/White_Papers.htm.

[2] See DKMS Brief No. One: The Corporate Information Factory or the Corporate Knowledge Factory?" at
http://www.dkms.com/White_Papers.htm.

[3] There's a very sizable literature dealing with the definition and conceptualization of software agents. Here
I've relied on Elizabeth A. Kendall, Margaret T. Malkoun and Chong Jiang, "A Methodology for Developing
Agent Based Systems for Enterprise Integration, Royal Melbourne Institute of Technology, available at:
http://www.cse.rmit.edu.au/~rdsek/, and Shaw Green, Leon Hurst, Brenda Nangle, Dr. Padraig Cunningham,
Fergal Summers, and Dr. Richard Evans, "Software Agents: A Review," Trinity College, Dublin, and
Broadcom Eirann Research Ltd., May 27, 1997, available at:

[4 See Robert Orfali, Dan Harkey and Jeri Edwards, The Essential Distributed Objects Survival Guide (New
York: John Wiley & Sons, 1998) Pp. 255-256, and 401-405

[5] Ibid.

[6] Op. cit "Software Agents . . ." Pp. 26-27

[7] See op. cit., Joseph M. Firestone, "Distributed Knowledge Management Systems . . ." Pp. 7-15.

[8] The Dynamic Integration Problem is discussed in more detail in "Architectural Evolution . . ." op. cit.

[9] Reflexive objects are used in Template Software Enterprise Integration Template product. See Template
Software, "Integration Solutions for the Real-Time Enterprise: EIT - Enterprise Integration Template," Dulles,
VA, White Paper May 8, 1998, P. 17 at http://www.template.com.

[10] The Enterprise Integration Template provides a distributed object model as well as process control and
connectivity services useful in developing a distributed AKM. See Ibid. Two other products that could be used

5 of 6 5/24/02 3:27 PM

Software Agents in Distributed Knowledge Management Systems file:///E|/FrontPage Webs/Content/EISWEB/DKMSAgentsbak.html

to develop an AKM component are DAMAN's InfoManager (inquire at http://www.damanconsulting.com),
and Ibex's DAWN workflow product along with its ITASCA active database (at http://www.ibex.ch/)

[11] Information Retrieval Agents similar to what I've called knowledge retrieval agents are conceptualized in
"Software Agents . . ." Pp.11-12. I've relied on this development in my treatment.

[12] The Perform KDD use case is described in detail in my "Knowledge Management Metrics Development:
A Technical Approach," at http://www.dkms.com/White_Papers.htm.

[13] See Jeffrey M. Bradshaw (ed.), Software Agents (Cambridge, MA: AAAI Press/M.I.T. Press, 1998), P.
31.

Biography

Joseph M. Firestone is an independent Information Technology consultant working in the areas of Decision
Support (especially Data Marts and Data Mining), Business Process Reengineering and Database Marketing.
He formulated and is developing the idea of Market Systems Reengineering (MSR). In addition, he is
developing an integrated data mining approach incorporating a fair comparison methodology for evaluating
data mining results. Finally, he is formulating the concept of Distributed Knowledge Management Systems
(DKMS) as an organizing framework for the next business "killer app." You can e-mail Joe at eisai@home.com

[Up] [KMBenefitEstimation.PDF] [MethodologyKIv1n2.pdf] [EKPwtawtdKI11.pdf]
[KMFAMrev1.PDF] [EKPebussol1.PDF] [The EKP Revisited]

[Information on "Approaching Enterprise Information Portals"]
[Benefits of Enterprise Information Portals and Corporate Goals]

[Defining the Enterprise Information Portal]
[Enterprise Integration, Data Federation And The DKMS: A Commentary]

[Enterprise Information Portals and Enterprise Knowledge Portals]
[The Metaprise, The AKMS, and The EKP] [The KBMS and Knowledge Warehouse]

[The AKM Standard]
[Business Process Engines in Distributed Knowledge Management Systems]

[Software Agents in Distributed Knowledge Management Systems]
[Prophecy: META Group and the Future of Knowledge Management]

[Accelerating Innovation and KM Impact]
[Enterprise Knowledge Management Modeling and the DKMS]

[Knowledge Management Metrics Development]
[Basic Concepts of Knowledge Management]

[Distributed Knowledge Management Systems (DKMS): The Next Wave in DSS]

6 of 6 5/24/02 3:27 PM

Software Agents in Distributed Knowledge Management Systems file:///E|/FrontPage Webs/Content/EISWEB/DKMSAgentsbak.html

